一个不规则的时间序列data存储在一个pandas.DataFrame中.DatetimeIndex 已设置.我需要索引中连续条目之间的时间差.
An irregular time series data is stored in a pandas.DataFrame. A DatetimeIndex has been set. I need the time difference between consecutive entries in the index.
我以为会很简单
data.index.diff()
但是得到了
AttributeError: 'DatetimeIndex' object has no attribute 'diff'
我试过了
data.index - data.index.shift(1)
但是得到了
ValueError: Cannot shift with no freq
我不想在执行此操作之前先推断或强制执行频率.时间序列中存在很大的差距,这些差距将扩展到 nan 的大量运行.重点是首先找到这些差距.
I do not want to infer or enforce a frequency first before doing this operation. There are large gaps in the time series that would be expanded to large runs of nan. The point is to find these gaps first.
那么,什么是干净的方法来完成这个看似简单的操作呢?
So, what is a clean way to do this seemingly simple operation?
目前还没有实现index的diff函数.
There is no implemented diff function yet for index.
但是,可以先使用 Series.Index.to_series.html" rel="noreferrer">Index.to_series,如果您需要保留原始索引.如果需要默认索引,请使用不带索引参数的 Series 构造函数.
However, it is possible to convert the index to a Series first by using Index.to_series, if you need to preserve the original index. Use the Series constructor with no index parameter if the default index is needed.
代码示例:
rng = pd.to_datetime(['2015-01-10','2015-01-12','2015-01-13'])
data = pd.DataFrame({'a': range(3)}, index=rng)
print(data)
a
2015-01-10 0
2015-01-12 1
2015-01-13 2
a = data.index.to_series().diff()
print(a)
2015-01-10 NaT
2015-01-12 2 days
2015-01-13 1 days
dtype: timedelta64[ns]
a = pd.Series(data.index).diff()
print(a)
0 NaT
1 2 days
2 1 days
dtype: timedelta64[ns]
这篇关于没有频率的差异 pandas.DateTimeIndex的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何在 Python 中将货币字符串转换为浮点数?How do I convert a currency string to a floating point number in Python?(如何在 Python 中将货币字符串转换为浮点数?)
在 Pandas 中解析多索引 Excel 文件Parsing a Multi-Index Excel File in Pandas(在 Pandas 中解析多索引 Excel 文件)
pandas 时间序列 between_datetime 函数?pandas timeseries between_datetime function?( pandas 时间序列 between_datetime 函数?)
pandas 重新采样到每月的特定工作日pandas resample to specific weekday in month( pandas 重新采样到每月的特定工作日)
在 Pandas 中合并/组合两个具有不同频率时间序列Merging/combining two dataframes with different frequency time series indexes in Pandas?(在 Pandas 中合并/组合两个具有不同频率时间序列索
Python - 如何标准化时间序列数据Python - how to normalize time-series data(Python - 如何标准化时间序列数据)