我有一个如下形式的熊猫数据框:
I have a dataframe in pandas of the following form:
timestamps light
7 2004-02-28 00:58:45 150.88
26 2004-02-28 00:59:45 143.52
34 2004-02-28 01:00:45 150.88
42 2004-02-28 01:01:15 150.88
59 2004-02-28 01:02:15 150.88
这里注意索引不是时间戳列.但我想重新采样(或以某种方式对数据进行分类)以反映每分钟、每小时、每天等光柱的平均值.我研究了 pandas 提供的 resample 方法,它需要数据框有一个数据时间索引以便该方法工作(除非我误解了这一点).
Here note that the index is not the timestamps column. But I want to resample (or bin the data somehow) to reflect the average value of the light column per minute , hour, day etc.. I have looked into the resample method that pandas offers and it requires the dataframe to have a datatime index for the method to work (unless I've misunderstood this).
所以我的第一个问题是,我可以重新索引数据帧以将时间戳作为索引(请注意,并非每一行都有唯一的时间戳,对于每个时间戳,大约有 30 行具有相同的时间戳,每个代表一个传感器).
So my first question is, can I re-index the dataframe to have timestamps as the index (note that not each row has a unique timestamp and for each timestamp, there are about 30 rows with the same timestamp,each representing a sensor).
如果没有,是否有其他方法可以实现另一个数据帧,该数据帧具有每小时、每天、每月等的平均值?
If not, is there some other way to possibly achieve another dataframe which has the average value of light per hour , per day , per month etc..?
任何帮助将不胜感激.
你是对的 - 需要 DatetimeIndex, TimedeltaIndex 或 PeriodIndex 否则错误:
You are right - need DatetimeIndex, TimedeltaIndex or PeriodIndex else error:
TypeError:仅对 DatetimeIndex、TimedeltaIndex 或 PeriodIndex 有效,但获得了 'Index' 的实例
TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'Index'
所以你必须先 reset_index 和 set_index 如果原始 index 很重要:
So you have to first reset_index and set_index if original index is important:
print (df.reset_index().set_index('timestamps'))
index light
timestamps
2004-02-28 00:58:45 7 150.88
2004-02-28 00:59:45 26 143.52
2004-02-28 01:00:45 34 150.88
2004-02-28 01:01:15 42 150.88
2004-02-28 01:02:15 59 150.88
如果不只是 set_index:
if not only set_index:
print (df.set_index('timestamps'))
light
timestamps
2004-02-28 00:58:45 150.88
2004-02-28 00:59:45 143.52
2004-02-28 01:00:45 150.88
2004-02-28 01:01:15 150.88
2004-02-28 01:02:15 150.88
然后 resample:
print (df.reset_index().set_index('timestamps').resample('1D').mean())
index light
timestamps
2004-02-28 33.6 149.408
这篇关于 pandas 数据框每天重新采样,没有日期时间索引的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何在 Python 中将货币字符串转换为浮点数?How do I convert a currency string to a floating point number in Python?(如何在 Python 中将货币字符串转换为浮点数?)
在 Pandas 中解析多索引 Excel 文件Parsing a Multi-Index Excel File in Pandas(在 Pandas 中解析多索引 Excel 文件)
pandas 时间序列 between_datetime 函数?pandas timeseries between_datetime function?( pandas 时间序列 between_datetime 函数?)
pandas 重新采样到每月的特定工作日pandas resample to specific weekday in month( pandas 重新采样到每月的特定工作日)
在 Pandas 中合并/组合两个具有不同频率时间序列Merging/combining two dataframes with different frequency time series indexes in Pandas?(在 Pandas 中合并/组合两个具有不同频率时间序列索
Python - 如何标准化时间序列数据Python - how to normalize time-series data(Python - 如何标准化时间序列数据)