我有一个时间序列示例的数据集.我想计算各种时间序列示例之间的相似性,但是我不想考虑由于缩放引起的差异(即我想查看时间序列形状的相似性,而不是它们的绝对值).因此,为此,我需要一种标准化数据的方法.也就是说,使所有时间序列示例都落在某个区域之间,例如 [0,100].谁能告诉我如何在 python 中做到这一点
I have a dataset of time-series examples. I want to calculate the similarity between various time-series examples, however I do not want to take into account differences due to scaling (i.e. I want to look at similarities in the shape of the time-series, not their absolute value). So, to this end, I need a way of normalizing the data. That is, making all of the time-series examples fall between a certain region e.g [0,100]. Can anyone tell me how this can be done in python
假设你的时间序列是一个数组,试试这样:
Assuming that your timeseries is an array, try something like this:
(timeseries-timeseries.min())/(timeseries.max()-timeseries.min())
这会将您的值限制在 0 和 1 之间
This will confine your values between 0 and 1
这篇关于Python - 如何标准化时间序列数据的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何在 Python 中将货币字符串转换为浮点数?How do I convert a currency string to a floating point number in Python?(如何在 Python 中将货币字符串转换为浮点数?)
在 Pandas 中解析多索引 Excel 文件Parsing a Multi-Index Excel File in Pandas(在 Pandas 中解析多索引 Excel 文件)
pandas 时间序列 between_datetime 函数?pandas timeseries between_datetime function?( pandas 时间序列 between_datetime 函数?)
pandas 重新采样到每月的特定工作日pandas resample to specific weekday in month( pandas 重新采样到每月的特定工作日)
在 Pandas 中合并/组合两个具有不同频率时间序列Merging/combining two dataframes with different frequency time series indexes in Pandas?(在 Pandas 中合并/组合两个具有不同频率时间序列索
statsmodels 使用 ARMA 模型进行预测statsmodels forecasting using ARMA model(statsmodels 使用 ARMA 模型进行预测)