您好,如果时间序列索引在工作时间之外,我想屏蔽一个每小时时间序列.
Hello I have an hourly timeseries that I would like to mask if the timeseries index is outside business hours.
我可以实现我想要的工作日数据,但不能实现每小时数据
I can achieve what I want for business day data but not hourly data
import datetime
import pandas as pd
import numpy as np
from pandas.tseries.offsets import *
st = datetime.datetime(2013, 1, 1)
ed = datetime.datetime(2013, 2, 1)
myrange = pd.date_range(st, ed, freq='H')
ts = pd.Series(np.random.randn(len(myrange)), index=myrange)
ts.asfreq(BDay()).asfreq(Day())
我尝试生成 BDay 日期范围,然后将频率更改为每小时,但这不起作用.
I have tried generating a BDay date range and then changing the freq to hourly but this doesn't work.
newrange = pd.date_range(datetime.datetime(2013, 1, 1), datetime.datetime(2013, 1, 1), freq='B')
#but adding this doesn't work .asfreq(Hour())
ts[ts.index.isin(newrange)].asfreq(Hour()) #Of course this only gives one value on the day
谢谢
将您的时间限制为您可以使用的工作日:
To restrict your times to Business days you could use:
ts = ts.ix[ts.index.map(BDay())]
和indexer_between_time 限制营业时间:
and indexer_between_time to restrict between business hours:
ts = ts.ix[ts.index.indexer_between_time(time(7), time(18))]
限制在工作时间内的工作日(以任一顺序应用这些).
To restrict to Business days within business hours (apply these in either order).
这篇关于工作时间以外的掩码时间序列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何在 Python 中将货币字符串转换为浮点数?How do I convert a currency string to a floating point number in Python?(如何在 Python 中将货币字符串转换为浮点数?)
在 Pandas 中解析多索引 Excel 文件Parsing a Multi-Index Excel File in Pandas(在 Pandas 中解析多索引 Excel 文件)
pandas 时间序列 between_datetime 函数?pandas timeseries between_datetime function?( pandas 时间序列 between_datetime 函数?)
pandas 重新采样到每月的特定工作日pandas resample to specific weekday in month( pandas 重新采样到每月的特定工作日)
在 Pandas 中合并/组合两个具有不同频率时间序列Merging/combining two dataframes with different frequency time series indexes in Pandas?(在 Pandas 中合并/组合两个具有不同频率时间序列索
Python - 如何标准化时间序列数据Python - how to normalize time-series data(Python - 如何标准化时间序列数据)