我正在尝试检测"一系列速度的突然下降,但我不知道如何捕捉它.详情及代码如下:
I am trying to "detect" a sudden drop in velocity in a series and I'm not sure how to capture it. The details and code are below:
这是我拥有的系列片段以及生成它的代码:
This is a snippet of the Series that I have along with the code to produce it:
velocity_df.velocity.car1
Index velocity
200 17.9941
201 17.9941
202 18.4031
203 18.4031
这是整个系列的情节
我正在尝试检测从 220 到 230-40 的突然下降,并将其保存为如下所示的系列:
I'm trying to detect the sudden drop from 220 to 230-40 and save that out as a Series that looks like this:
Index velocity
220 14.927
221 14.927
222 14.927
223 14.927
224 14.518
225 14.518
226 16.1538
227 12.2687
228 9.20155
229 6.33885
230 4.49854
我只是想在速度突然下降时捕捉一个大概的范围,以便使用其他功能.
I'm just trying to capture an approximate range when there is a sudden decrease in speed so as to use other features.
如果我可以添加任何其他信息,请告诉我.谢谢!
If I can add any additional information, please let me know. Thank you!
如果您想一个一个地比较两个值,这将是一种简单的方法:
This would be a simple approach, if you want to compare two values one by one:
鉴于您的问题中的系列,称为 s,您可以通过将其减去 1 来构造数据的绝对离散导数:
Given the series from your question, called s you can construct the absolute discrete derivative of your data by subtracting it with a shift of 1:
d = pd.Series(s.values[1:] - s.values[:-1], index=s.index[:-1]).abs()
如果现在取该系列绝对差中的最大 m,则可以将其乘以 0 到 1 之间的因子 a 作为阈值:
If you now take the maximum m of that series of absolute differences, you can multiply it with a factor a between 0 and 1 as a threshold:
a = .7
m = d.max()
print(d > m * a)
最后一行输出匹配的索引.
The last line outputs the indices of the matches.
在此基础上,您可以使用滑动窗口技术,例如 内核密度估计或 Parzen 窗口 创建更平滑的结果:
Building up on this, you could use a sliding window technique such as kernel density estimation, or Parzen window to create more smooth results:
r = d.rolling(3, min_periods=1, win_type='parzen').sum()
n = r.max()
就像之前我们可以打印出匹配的元素一样
Like before we can print out the matching elements
print(r > n * a)
给出以下输出
Index
220 False
221 False
222 False
223 False
224 False
225 False
226 False
227 True
228 True
229 True
dtype: bool
这篇关于如何检测 Pandas 时间序列图中的突然变化的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何在 Python 中将货币字符串转换为浮点数?How do I convert a currency string to a floating point number in Python?(如何在 Python 中将货币字符串转换为浮点数?)
在 Pandas 中解析多索引 Excel 文件Parsing a Multi-Index Excel File in Pandas(在 Pandas 中解析多索引 Excel 文件)
pandas 时间序列 between_datetime 函数?pandas timeseries between_datetime function?( pandas 时间序列 between_datetime 函数?)
pandas 重新采样到每月的特定工作日pandas resample to specific weekday in month( pandas 重新采样到每月的特定工作日)
在 Pandas 中合并/组合两个具有不同频率时间序列Merging/combining two dataframes with different frequency time series indexes in Pandas?(在 Pandas 中合并/组合两个具有不同频率时间序列索
Python - 如何标准化时间序列数据Python - how to normalize time-series data(Python - 如何标准化时间序列数据)