Python 在进程之间共享锁

时间:2023-04-27
本文介绍了Python 在进程之间共享锁的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

限时送ChatGPT账号..

我正在尝试使用部分函数,​​以便 pool.map() 可以针对具有多个参数的函数(在本例中为 Lock() 对象).

I am attempting to use a partial function so that pool.map() can target a function that has more than one parameter (in this case a Lock() object).

这里是示例代码(取自我上一个问题的答案):

Here is example code (taken from an answer to a previous question of mine):

from functools import partial

def target(lock, iterable_item):
    for item in items:
        # Do cool stuff
        if (... some condition here ...):
            lock.acquire()
            # Write to stdout or logfile, etc.
            lock.release()

def main():
    iterable = [1, 2, 3, 4, 5]
    pool = multiprocessing.Pool()
    l = multiprocessing.Lock()
    func = partial(target, l)
    pool.map(func, iterable)
    pool.close()
    pool.join()

但是当我运行这段代码时,我得到了错误:

However when I run this code, I get the error:

Runtime Error: Lock objects should only be shared between processes through inheritance.

我在这里缺少什么?如何在我的子进程之间共享锁?

What am I missing here? How can I share the lock between my subprocesses?

推荐答案

你不能将普通的 multiprocessing.Lock 对象传递给 Pool 方法,因为它们不能被腌制.有两种方法可以解决这个问题.一种是创建 Manager() 和传递一个 Manager.Lock():

You can't pass normal multiprocessing.Lock objects to Pool methods, because they can't be pickled. There are two ways to get around this. One is to create Manager() and pass a Manager.Lock():

def main():
    iterable = [1, 2, 3, 4, 5]
    pool = multiprocessing.Pool()
    m = multiprocessing.Manager()
    l = m.Lock()
    func = partial(target, l)
    pool.map(func, iterable)
    pool.close()
    pool.join()

不过,这有点重量级;使用 Manager 需要生成另一个进程来托管 Manager 服务器.并且所有对 acquire/release 锁的调用都必须通过 IPC 发送到该服务器.

This is a little bit heavyweight, though; using a Manager requires spawning another process to host the Manager server. And all calls to acquire/release the lock have to be sent to that server via IPC.

另一个选项是在创建池时使用 initializer kwarg 传递常规的 multiprocessing.Lock().这将使您的锁实例在所有子工作者中都是全局的:

The other option is to pass the regular multiprocessing.Lock() at Pool creation time, using the initializer kwarg. This will make your lock instance global in all the child workers:

def target(iterable_item):
    for item in items:
        # Do cool stuff
        if (... some condition here ...):
            lock.acquire()
            # Write to stdout or logfile, etc.
            lock.release()
def init(l):
    global lock
    lock = l

def main():
    iterable = [1, 2, 3, 4, 5]
    l = multiprocessing.Lock()
    pool = multiprocessing.Pool(initializer=init, initargs=(l,))
    pool.map(target, iterable)
    pool.close()
    pool.join()

第二种解决方案的副作用是不再需要partial.

The second solution has the side-effect of no longer requiring partial.

这篇关于Python 在进程之间共享锁的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!

上一篇:多处理:了解“块大小"背后的逻辑 下一篇:在 Python 多处理中将 Pool.map 与共享内存数组结合

相关文章

最新文章