我正在尝试将 UTC 时间转换为本地时间.这是我之前的经历
I am trying to convert utc time to local time. This is what I had before
df_combined_features['timestamp'][1:10]
2013-01-24 2013-01-24 11:00:00
2013-04-25 2013-04-25 10:00:00
2013-07-25 2013-07-25 10:00:00
2013-10-24 2013-10-24 10:00:00
2014-01-30 2014-01-30 11:00:00
2014-04-24 2014-04-24 10:00:00
2014-07-24 2014-07-24 10:00:00
2014-10-23 2014-10-23 10:00:00
2015-01-27 2015-01-27 11:00:00
这就是我所做的
df_combined_features['time_stamp'].tz_localize('US/Central')[1:10]
2013-01-24 00:00:00-06:00 2013-01-24 11:00:00
2013-04-25 00:00:00-05:00 2013-04-25 10:00:00
2013-07-25 00:00:00-05:00 2013-07-25 10:00:00
2013-10-24 00:00:00-05:00 2013-10-24 10:00:00
2014-01-30 00:00:00-06:00 2014-01-30 11:00:00
2014-04-24 00:00:00-05:00 2014-04-24 10:00:00
2014-07-24 00:00:00-05:00 2014-07-24 10:00:00
2014-10-23 00:00:00-05:00 2014-10-23 10:00:00
2015-01-27 00:00:00-06:00 2015-01-27 11:00:00
我认为它做了正确的事情,但我不明白输出格式.特别是
I think it did the right thing, but I dont understand the output format. In particular
1) 为什么转换后的列显示为新索引?
1) Why do the converted cols appear as the new index?
2) 我知道 -06:00(最后一行)是一个小时班次,所以时间是早上 6:00,我如何检索该信息,准确的当地时间?
2) I understand that -06:00 (in the last row) is an hour shift, so the time is 6:00 am, how do I retrieve that information, the exact local time?
所需的输出,我想要发布的确切时间,包括与 UTC 的偏移量.当地时间 UTC 时间
Desired output, I want the exact time to be posted, including the offset from utc. local time utc time
2013-01-24 05:00:00 2013-01-24 11:00:00
2013-04-25 05:00:00 2013-04-25 10:00:00
2013-07-25 05:00:00 2013-07-25 10:00:00
2013-10-24 05:00:00 2013-10-24 10:00:00
2014-01-30 05:00:00 2014-01-30 11:00:00
2014-04-24 05:00:00 2014-04-24 10:00:00
2014-07-24 05:00:00 2014-07-24 10:00:00
2014-10-23 05:00:00 2014-10-23 10:00:00
2015-01-27 05:00:00 2015-01-27 11:00:00
当你调用 tz.localize 你本地化索引,如果你想修改列你需要调用 dt.localize 还要添加时区偏移调用 dt.tz_convert('UTC'):
In [125]:
df['timestamp'].dt.tz_localize('utc').dt.tz_convert('US/Central')
Out[125]:
index
2013-01-24 2013-01-24 05:00:00-06:00
2013-04-25 2013-04-25 05:00:00-05:00
2013-07-25 2013-07-25 05:00:00-05:00
2013-10-24 2013-10-24 05:00:00-05:00
2014-01-30 2014-01-30 05:00:00-06:00
2014-04-24 2014-04-24 05:00:00-05:00
2014-07-24 2014-07-24 05:00:00-05:00
2014-10-23 2014-10-23 05:00:00-05:00
2015-01-27 2015-01-27 05:00:00-06:00
Name: timestamp, dtype: datetime64[ns, US/Central]
比较没有.dt:
Compare without .dt:
In [126]:
df['timestamp'].tz_localize('utc').tz_convert('US/Central')
Out[126]:
index
2013-01-23 18:00:00-06:00 2013-01-24 11:00:00
2013-04-24 19:00:00-05:00 2013-04-25 10:00:00
2013-07-24 19:00:00-05:00 2013-07-25 10:00:00
2013-10-23 19:00:00-05:00 2013-10-24 10:00:00
2014-01-29 18:00:00-06:00 2014-01-30 11:00:00
2014-04-23 19:00:00-05:00 2014-04-24 10:00:00
2014-07-23 19:00:00-05:00 2014-07-24 10:00:00
2014-10-22 19:00:00-05:00 2014-10-23 10:00:00
2015-01-26 18:00:00-06:00 2015-01-27 11:00:00
Name: timestamp, dtype: datetime64[ns]
这篇关于 pandas 时间从UTC到本地的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何按行计算百分比并注释 100% 堆积条How to calculate percent by row and annotate 100 percent stacked bars(如何按行计算百分比并注释 100% 堆积条)
如何在分组条形图上方显示百分比How to display percentage above grouped bar chart(如何在分组条形图上方显示百分比)
python pandas TimeStamps到夏令时的本地时间字符串python pandas TimeStamps to local time string with daylight saving(python pandas TimeStamps到夏令时的本地时间字符串)
在 pandas.Series 中将时间戳转换为 datetime.datetimeconvert timestamp to datetime.datetime in pandas.Series(在 pandas.Series 中将时间戳转换为 datetime.datetime)
Python 按日期列出分组Python List Group by Date(Python 按日期列出分组)
在 Python 中合并和排序日志文件Merging and sorting log files in Python(在 Python 中合并和排序日志文件)