我有以下数据框df:
id lat lon year month day
0 381 53.30660 -0.54649 2004 1 2
1 381 53.30660 -0.54649 2004 1 3
2 381 53.30660 -0.54649 2004 1 4
我想创建一个新列 df['Date'],其中 year、month 和 day 列按 yyyy-md 格式组合.
and I want to create a new column df['Date'] where the year, month, and day columns are combined according to the format yyyy-m-d.
在这篇文章之后,我做到了:
`df['Date']=pd.to_datetime(df['year']*10000000000
+df['month']*100000000
+df['day']*1000000,
format='%Y-%m-%d%')`
结果不是我预期的,因为它是从 1970 年而不是 2004 年开始的,而且它还包含我没有指定的小时戳:
The result is not what I expected, as it starts from 1970 instead of 2004, and it also contains the hour stamp, which I did not specify:
id lat lon year month day Date
0 381 53.30660 -0.54649 2004 1 2 1970-01-01 05:34:00.102
1 381 53.30660 -0.54649 2004 1 3 1970-01-01 05:34:00.103
2 381 53.30660 -0.54649 2004 1 4 1970-01-01 05:34:00.104
由于日期应该是 2004-1-2 格式,我做错了什么?
As the dates should be in the 2004-1-2 format, what am I doing wrong?
有一个更简单的方法:
In [250]: df['Date']=pd.to_datetime(df[['year','month','day']])
In [251]: df
Out[251]:
id lat lon year month day Date
0 381 53.3066 -0.54649 2004 1 2 2004-01-02
1 381 53.3066 -0.54649 2004 1 3 2004-01-03
2 381 53.3066 -0.54649 2004 1 4 2004-01-04
来自 文档:
从 DataFrame 的多列中组装日期时间.按键可以是常见的缩写,如 [year、month、day、minute、second、ms、us、ns])或相同的复数形式
Assembling a datetime from multiple columns of a DataFrame. The keys can be common abbreviations like [
year,month,day,minute,second,ms,us,ns]) or plurals of the same
这篇关于如何将年、月和日列合并到单个日期时间列?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
python:不同包下同名的两个模块和类python: Two modules and classes with the same name under different packages(python:不同包下同名的两个模块和类)
配置 Python 以使用站点包的其他位置Configuring Python to use additional locations for site-packages(配置 Python 以使用站点包的其他位置)
如何在不重复导入顶级名称的情况下构造python包How to structure python packages without repeating top level name for import(如何在不重复导入顶级名称的情况下构造python包)
在 OpenShift 上安装 python 包Install python packages on OpenShift(在 OpenShift 上安装 python 包)
如何刷新 sys.path?How to refresh sys.path?(如何刷新 sys.path?)
分发带有已编译动态共享库的 Python 包Distribute a Python package with a compiled dynamic shared library(分发带有已编译动态共享库的 Python 包)