Is it possible to use a variable inside of a Python string formatting specifier?
I have tried:
display_width = 50
print('
{:^display_width}'.format('some text here'))
but get a ValueError: Invalid format specifier. I have also tried display_width = str(50)
however, just entering print('
{:^50}'.format('some text here')) works just fine.
Yes, but you have to pass them in as arguments to format, and then refer to them wrapped in {} like you would the argument name itself:
print('
{:^{display_width}}'.format('some text here', display_width=display_width))
Or shorter but a little less explicit:
print('
{:^{}}'.format('some text here', display_width))
Since this question was originally posted, Python 3.6 has added f-strings, which allow you to do this without using the format method and it uses variables which are in scope rather than having to pass in the named variables as keyword arguments:
display_width = 50
text = 'some text here'
print(f'
{text:^{display_width}}')
这篇关于如何在 Python 格式说明符中使用变量名的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何在 Python 中将货币字符串转换为浮点数?How do I convert a currency string to a floating point number in Python?(如何在 Python 中将货币字符串转换为浮点数?)
在 Pandas 中解析多索引 Excel 文件Parsing a Multi-Index Excel File in Pandas(在 Pandas 中解析多索引 Excel 文件)
pandas 时间序列 between_datetime 函数?pandas timeseries between_datetime function?( pandas 时间序列 between_datetime 函数?)
pandas 重新采样到每月的特定工作日pandas resample to specific weekday in month( pandas 重新采样到每月的特定工作日)
在 Pandas 中合并/组合两个具有不同频率时间序列Merging/combining two dataframes with different frequency time series indexes in Pandas?(在 Pandas 中合并/组合两个具有不同频率时间序列索
Python - 如何标准化时间序列数据Python - how to normalize time-series data(Python - 如何标准化时间序列数据)