<i id='Kbnuy'><tr id='Kbnuy'><dt id='Kbnuy'><q id='Kbnuy'><span id='Kbnuy'><b id='Kbnuy'><form id='Kbnuy'><ins id='Kbnuy'></ins><ul id='Kbnuy'></ul><sub id='Kbnuy'></sub></form><legend id='Kbnuy'></legend><bdo id='Kbnuy'><pre id='Kbnuy'><center id='Kbnuy'></center></pre></bdo></b><th id='Kbnuy'></th></span></q></dt></tr></i><div id='Kbnuy'><tfoot id='Kbnuy'></tfoot><dl id='Kbnuy'><fieldset id='Kbnuy'></fieldset></dl></div>
      • <bdo id='Kbnuy'></bdo><ul id='Kbnuy'></ul>

      <tfoot id='Kbnuy'></tfoot>
    1. <small id='Kbnuy'></small><noframes id='Kbnuy'>

    2. <legend id='Kbnuy'><style id='Kbnuy'><dir id='Kbnuy'><q id='Kbnuy'></q></dir></style></legend>
    3. 有效地将函数并行应用于分组的 pandas DataFrame

      时间:2023-05-26

        • <legend id='7DRQ6'><style id='7DRQ6'><dir id='7DRQ6'><q id='7DRQ6'></q></dir></style></legend>

          <i id='7DRQ6'><tr id='7DRQ6'><dt id='7DRQ6'><q id='7DRQ6'><span id='7DRQ6'><b id='7DRQ6'><form id='7DRQ6'><ins id='7DRQ6'></ins><ul id='7DRQ6'></ul><sub id='7DRQ6'></sub></form><legend id='7DRQ6'></legend><bdo id='7DRQ6'><pre id='7DRQ6'><center id='7DRQ6'></center></pre></bdo></b><th id='7DRQ6'></th></span></q></dt></tr></i><div id='7DRQ6'><tfoot id='7DRQ6'></tfoot><dl id='7DRQ6'><fieldset id='7DRQ6'></fieldset></dl></div>

            <bdo id='7DRQ6'></bdo><ul id='7DRQ6'></ul>
          • <small id='7DRQ6'></small><noframes id='7DRQ6'>

                  <tbody id='7DRQ6'></tbody>
                <tfoot id='7DRQ6'></tfoot>
                本文介绍了有效地将函数并行应用于分组的 pandas DataFrame的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

                问题描述

                限时送ChatGPT账号..

                我经常需要将一个函数应用到一个非常大的DataFrame(混合数据类型)的组中,并希望利用多个内核.

                I often need to apply a function to the groups of a very large DataFrame (of mixed data types) and would like to take advantage of multiple cores.

                我可以从组中创建一个迭代器并使用多处理模块,但效率不高,因为每个组和函数的结果都必须为进程之间的消息传递进行腌制.

                I can create an iterator from the groups and use the multiprocessing module, but it is not efficient because every group and the results of the function must be pickled for messaging between processes.

                有什么方法可以避免酸洗甚至完全避免 DataFrame 的复制?看起来多处理模块的共享内存功能仅限于 numpy 数组.还有其他选择吗?

                Is there any way to avoid the pickling or even avoid the copying of the DataFrame completely? It looks like the shared memory functions of the multiprocessing modules are limited to numpy arrays. Are there any other options?

                推荐答案

                从上面的评论看来,这似乎是为 pandas 计划的(还有一个看起来很有趣的 rosetta 项目 我刚刚注意到).

                From the comments above, it seems that this is planned for pandas some time (there's also an interesting-looking rosetta project which I just noticed).

                然而,在所有并行功能都被整合到 pandas 之前,我注意到编写高效的 & 是非常容易的.直接使用 cython + pandas 进行非内存复制并行扩充"http://www.google.co.il/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.openmp.org%2F&ei=HKpdVfyVJcj8ULXHgcAF&usg=AFQjCNGlD5aZM8ZP3Qx7WXT74Y7C54jLNQ&bvm=bv.93756505,d.d24">OpenMP 和 C++.

                However, until every parallel functionality is incorporated into pandas, I noticed that it's very easy to write efficient & non-memory-copying parallel augmentations to pandas directly using cython + OpenMP and C++.

                这是一个编写并行 groupby-sum 的简短示例,其用法如下:

                Here's a short example of writing a parallel groupby-sum, whose use is something like this:

                import pandas as pd
                import para_group_demo
                
                df = pd.DataFrame({'a': [1, 2, 1, 2, 1, 1, 0], 'b': range(7)})
                print para_group_demo.sum(df.a, df.b)
                

                输出是:

                     sum
                key     
                0      6
                1      11
                2      4
                

                <小时>

                注意 毫无疑问,这个简单示例的功能最终将成为 pandas 的一部分.然而,有些事情在 C++ 中并行化一段时间会更自然,重要的是要知道将其组合到 pandas 中是多么容易.


                Note Doubtlessly, this simple example's functionality will eventually be part of pandas. Some things, however, will be more natural to parallelize in C++ for some time, and it's important to be aware of how easy it is to combine this into pandas.

                为此,我编写了一个简单的单源文件扩展名,其代码如下.

                To do this, I wrote a simple single-source-file extension whose code follows.

                从一些导入和类型定义开始

                It starts with some imports and type definitions

                from libc.stdint cimport int64_t, uint64_t
                from libcpp.vector cimport vector
                from libcpp.unordered_map cimport unordered_map
                
                cimport cython
                from cython.operator cimport dereference as deref, preincrement as inc
                from cython.parallel import prange
                
                import pandas as pd
                
                ctypedef unordered_map[int64_t, uint64_t] counts_t
                ctypedef unordered_map[int64_t, uint64_t].iterator counts_it_t
                ctypedef vector[counts_t] counts_vec_t
                

                C++的unordered_map类型是单线程求和,vector是所有线程求和.

                The C++ unordered_map type is for summing by a single thread, and the vector is for summing by all threads.

                现在到函数 sum.它从 键入的内存视图 开始,以便快速访问:

                Now to the function sum. It starts off with typed memory views for fast access:

                def sum(crit, vals):
                    cdef int64_t[:] crit_view = crit.values
                    cdef int64_t[:] vals_view = vals.values
                

                该函数继续将半等分到线程(这里硬编码为 4),并让每个线程将其范围内的条目相加:

                The function continues by dividing the semi-equally to the threads (here hardcoded to 4), and having each thread sum the entries in its range:

                    cdef uint64_t num_threads = 4
                    cdef uint64_t l = len(crit)
                    cdef uint64_t s = l / num_threads + 1
                    cdef uint64_t i, j, e
                    cdef counts_vec_t counts
                    counts = counts_vec_t(num_threads)
                    counts.resize(num_threads)
                    with cython.boundscheck(False):
                        for i in prange(num_threads, nogil=True): 
                            j = i * s
                            e = j + s
                            if e > l:
                                e = l
                            while j < e:
                                counts[i][crit_view[j]] += vals_view[j]
                                inc(j)
                

                当线程完成时,该函数将所有结果(来自不同范围)合并到单个 unordered_map:

                When the threads have completed, the function merges all the results (from the different ranges) into a single unordered_map:

                    cdef counts_t total
                    cdef counts_it_t it, e_it
                    for i in range(num_threads):
                        it = counts[i].begin()
                        e_it = counts[i].end()
                        while it != e_it:
                            total[deref(it).first] += deref(it).second
                            inc(it)        
                

                剩下的就是创建一个DataFrame并返回结果:

                All that's left is to create a DataFrame and return the results:

                    key, sum_ = [], []
                    it = total.begin()
                    e_it = total.end()
                    while it != e_it:
                        key.append(deref(it).first)
                        sum_.append(deref(it).second)
                        inc(it)
                
                    df = pd.DataFrame({'key': key, 'sum': sum_})
                    df.set_index('key', inplace=True)
                    return df
                

                这篇关于有效地将函数并行应用于分组的 pandas DataFrame的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!

                上一篇:如何将调试器附加到 python 子进程? 下一篇:跨多处理 python 共享 pandas 数据框字典

                相关文章

                最新文章

              • <i id='rvZ7a'><tr id='rvZ7a'><dt id='rvZ7a'><q id='rvZ7a'><span id='rvZ7a'><b id='rvZ7a'><form id='rvZ7a'><ins id='rvZ7a'></ins><ul id='rvZ7a'></ul><sub id='rvZ7a'></sub></form><legend id='rvZ7a'></legend><bdo id='rvZ7a'><pre id='rvZ7a'><center id='rvZ7a'></center></pre></bdo></b><th id='rvZ7a'></th></span></q></dt></tr></i><div id='rvZ7a'><tfoot id='rvZ7a'></tfoot><dl id='rvZ7a'><fieldset id='rvZ7a'></fieldset></dl></div>
                1. <small id='rvZ7a'></small><noframes id='rvZ7a'>

                  <legend id='rvZ7a'><style id='rvZ7a'><dir id='rvZ7a'><q id='rvZ7a'></q></dir></style></legend>
                  <tfoot id='rvZ7a'></tfoot>

                      <bdo id='rvZ7a'></bdo><ul id='rvZ7a'></ul>