如何在python中使用动态时间扭曲和kNN

时间:2023-04-28
本文介绍了如何在python中使用动态时间扭曲和kNN的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

限时送ChatGPT账号..

我有一个带有两个标签(01)的时间序列数据集.我正在使用动态时间规整 (DTW) 作为使用 k 近邻 (kNN) 进行分类的相似性度量,如以下两篇精彩的博客文章所述:

I have a time-series dataset with two lables (0 and 1). I am using Dynamic Time Warping (DTW) as a similarity measure for classification using k-nearest neighbour (kNN) as described in these two wonderful blog posts:

  • https://nbviewer.jupyter.org/github/markdregan/K-Nearest-Neighbors-with-Dynamic-Time-Warping/blob/master/K_Nearest_Neighbor_Dynamic_Time_Warping.ipynb
  • http:///alexminnaar.com/2014/04/16/Time-Series-Classification-and-Clustering-with-Python.html

Arguments
---------
n_neighbors : int, optional (default = 5)
    Number of neighbors to use by default for KNN

max_warping_window : int, optional (default = infinity)
    Maximum warping window allowed by the DTW dynamic
    programming function

subsample_step : int, optional (default = 1)
    Step size for the timeseries array. By setting subsample_step = 2,
    the timeseries length will be reduced by 50% because every second
    item is skipped. Implemented by x[:, ::subsample_step]
"""

def __init__(self, n_neighbors=5, max_warping_window=10000, subsample_step=1):
    self.n_neighbors = n_neighbors
    self.max_warping_window = max_warping_window
    self.subsample_step = subsample_step

def fit(self, x, l):
    """Fit the model using x as training data and l as class labels

    Arguments
    ---------
    x : array of shape [n_samples, n_timepoints]
        Training data set for input into KNN classifer

    l : array of shape [n_samples]
        Training labels for input into KNN classifier
    """

    self.x = x
    self.l = l

def _dtw_distance(self, ts_a, ts_b, d = lambda x,y: abs(x-y)):
    """Returns the DTW similarity distance between two 2-D
    timeseries numpy arrays.

    Arguments
    ---------
    ts_a, ts_b : array of shape [n_samples, n_timepoints]
        Two arrays containing n_samples of timeseries data
        whose DTW distance between each sample of A and B
        will be compared

    d : DistanceMetric object (default = abs(x-y))
        the distance measure used for A_i - B_j in the
        DTW dynamic programming function

    Returns
    -------
    DTW distance between A and B
    """

    # Create cost matrix via broadcasting with large int
    ts_a, ts_b = np.array(ts_a), np.array(ts_b)
    M, N = len(ts_a), len(ts_b)
    cost = sys.maxint * np.ones((M, N))

    # Initialize the first row and column
    cost[0, 0] = d(ts_a[0], ts_b[0])
    for i in xrange(1, M):
        cost[i, 0] = cost[i-1, 0] + d(ts_a[i], ts_b[0])

    for j in xrange(1, N):
        cost[0, j] = cost[0, j-1] + d(ts_a[0], ts_b[j])

    # Populate rest of cost matrix within window
    for i in xrange(1, M):
        for j in xrange(max(1, i - self.max_warping_window),
                        min(N, i + self.max_warping_window)):
            choices = cost[i - 1, j - 1], cost[i, j-1], cost[i-1, j]
            cost[i, j] = min(choices) + d(ts_a[i], ts_b[j])

    # Return DTW distance given window 
    return cost[-1, -1]

def _dist_matrix(self, x, y):
    """Computes the M x N distance matrix between the training
    dataset and testing dataset (y) using the DTW distance measure

    Arguments
    ---------
    x : array of shape [n_samples, n_timepoints]

    y : array of shape [n_samples, n_timepoints]

    Returns
    -------
    Distance matrix between each item of x and y with
        shape [training_n_samples, testing_n_samples]
    """

    # Compute the distance matrix        
    dm_count = 0

    # Compute condensed distance matrix (upper triangle) of pairwise dtw distances
    # when x and y are the same array
    if(np.array_equal(x, y)):
        x_s = np.shape(x)
        dm = np.zeros((x_s[0] * (x_s[0] - 1)) // 2, dtype=np.double)

        p = ProgressBar(shape(dm)[0])

        for i in xrange(0, x_s[0] - 1):
            for j in xrange(i + 1, x_s[0]):
                dm[dm_count] = self._dtw_distance(x[i, ::self.subsample_step],
                                                  y[j, ::self.subsample_step])

                dm_count += 1
                p.animate(dm_count)

        # Convert to squareform
        dm = squareform(dm)
        return dm

    # Compute full distance matrix of dtw distnces between x and y
    else:
        x_s = np.shape(x)
        y_s = np.shape(y)
        dm = np.zeros((x_s[0], y_s[0])) 
        dm_size = x_s[0]*y_s[0]

        p = ProgressBar(dm_size)

        for i in xrange(0, x_s[0]):
            for j in xrange(0, y_s[0]):
                dm[i, j] = self._dtw_distance(x[i, ::self.subsample_step],
                                              y[j, ::self.subsample_step])
                # Update progress bar
                dm_count += 1
                p.animate(dm_count)

        return dm

def predict(self, x):
    """Predict the class labels or probability estimates for 
    the provided data

    Arguments
    ---------
      x : array of shape [n_samples, n_timepoints]
          Array containing the testing data set to be classified

    Returns
    -------
      2 arrays representing:
          (1) the predicted class labels 
          (2) the knn label count probability
    """

    dm = self._dist_matrix(x, self.x)

    # Identify the k nearest neighbors
    knn_idx = dm.argsort()[:, :self.n_neighbors]

    # Identify k nearest labels
    knn_labels = self.l[knn_idx]

    # Model Label
    mode_data = mode(knn_labels, axis=1)
    mode_label = mode_data[0]
    mode_proba = mode_data[1]/self.n_neighbors

    return mode_label.ravel(), mode_proba.ravel()

但是,对于使用 kNN 进行分类,这两篇文章使用了自己的 kNN 算法.

However, for classification with kNN the two posts use their own kNN algorithms.

我想在我的分类中使用 sklearn 的选项,例如 gridsearchcv.因此,我想知道如何将动态时间规整 (DTW) 与 sklearn kNN 结合使用.

I want to use sklearn's options such as gridsearchcv in my classification. Therefore, I would like to know how I can use Dynamic Time Warping (DTW) with sklearn kNN.

注意:我不仅限于 sklearn,也很乐意在其他库中收到答案

Note: I am not limited to sklearn and happy to receive answers in other libraries as well

如果需要,我很乐意提供更多详细信息.

I am happy to provide more details if needed.

推荐答案

您可以为 KNN 使用自定义指标.因此,您只需要自己实现 DTW(或在 python 中使用/调整任何现有的 DTW 实现) [此代码的要点].

You can use a custom metric for KNN. Therefore you only need to implement DTW yourself (or use/adapt any existing DTW implementation in python) [gist of this code].

import numpy as np
from scipy.spatial import distance
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report

#toy dataset 
X = np.random.random((100,10))
y = np.random.randint(0,2, (100))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)

#custom metric
def DTW(a, b):   
    an = a.size
    bn = b.size
    pointwise_distance = distance.cdist(a.reshape(-1,1),b.reshape(-1,1))
    cumdist = np.matrix(np.ones((an+1,bn+1)) * np.inf)
    cumdist[0,0] = 0

    for ai in range(an):
        for bi in range(bn):
            minimum_cost = np.min([cumdist[ai, bi+1],
                                   cumdist[ai+1, bi],
                                   cumdist[ai, bi]])
            cumdist[ai+1, bi+1] = pointwise_distance[ai,bi] + minimum_cost

    return cumdist[an, bn]

#train
parameters = {'n_neighbors':[2, 4, 8]}
clf = GridSearchCV(KNeighborsClassifier(metric=DTW), parameters, cv=3, verbose=1)
clf.fit(X_train, y_train)



#evaluate
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred))

产生的结果

Fitting 3 folds for each of 3 candidates, totalling 9 fits        

[Parallel(n_jobs=1)]: Done   9 out of   9 | elapsed:   29.0s finished

                         precision    recall  f1-score   support

                      0       0.57      0.89      0.70        18
                      1       0.60      0.20      0.30        15

            avg / total       0.58      0.58      0.52        33

这篇关于如何在python中使用动态时间扭曲和kNN的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!

上一篇:Keras LSTM:时间序列多步多特征预测 - 结果不佳 下一篇:如何在 python 中简单地计算时间序列的滚动/移动

相关文章

最新文章