我想优化我的查询,所以我查看了 mysql-slow.log.
I'd like to optimize my queries so I look into mysql-slow.log.
我的大多数慢查询都包含 ORDER BY RAND().我找不到解决此问题的真正解决方案.MySQLPerformanceBlog<有一个可能的解决方案/a> 但我认为这还不够.在优化不佳(或经常更新、用户管理)的表上,它不起作用,或者我需要运行两个或多个查询才能选择我的 PHP 生成的随机行.
Most of my slow queries contains ORDER BY RAND(). I cannot find a real solution to resolve this problem. Theres is a possible solution at MySQLPerformanceBlog but I don't think this is enough. On poorly optimized (or frequently updated, user managed) tables it doesn't work or I need to run two or more queries before I can select my PHP-generated random row.
这个问题有什么解决办法吗?
Is there any solution for this issue?
一个虚拟的例子:
SELECT accomodation.ac_id,
accomodation.ac_status,
accomodation.ac_name,
accomodation.ac_status,
accomodation.ac_images
FROM accomodation, accomodation_category
WHERE accomodation.ac_status != 'draft'
AND accomodation.ac_category = accomodation_category.acat_id
AND accomodation_category.acat_slug != 'vendeglatohely'
AND ac_images != 'b:0;'
ORDER BY
RAND()
LIMIT 1
试试这个:
SELECT *
FROM (
SELECT @cnt := COUNT(*) + 1,
@lim := 10
FROM t_random
) vars
STRAIGHT_JOIN
(
SELECT r.*,
@lim := @lim - 1
FROM t_random r
WHERE (@cnt := @cnt - 1)
AND RAND(20090301) < @lim / @cnt
) i
这在 MyISAM 上特别有效(因为 COUNT(*) 是即时的),但即使在 InnoDB 中它也是 10 比 ORDER BY RAND() 效率高几倍.
This is especially efficient on MyISAM (since the COUNT(*) is instant), but even in InnoDB it's 10 times more efficient than ORDER BY RAND().
这里的主要思想是我们不排序,而是保留两个变量并计算当前步骤要选择的行的运行概率.
The main idea here is that we don't sort, but instead keep two variables and calculate the running probability of a row to be selected on the current step.
有关详细信息,请参阅我博客中的这篇文章:
See this article in my blog for more detail:
更新:
如果你只需要选择一个随机记录,试试这个:
If you need to select but a single random record, try this:
SELECT aco.*
FROM (
SELECT minid + FLOOR((maxid - minid) * RAND()) AS randid
FROM (
SELECT MAX(ac_id) AS maxid, MIN(ac_id) AS minid
FROM accomodation
) q
) q2
JOIN accomodation aco
ON aco.ac_id =
COALESCE
(
(
SELECT accomodation.ac_id
FROM accomodation
WHERE ac_id > randid
AND ac_status != 'draft'
AND ac_images != 'b:0;'
AND NOT EXISTS
(
SELECT NULL
FROM accomodation_category
WHERE acat_id = ac_category
AND acat_slug = 'vendeglatohely'
)
ORDER BY
ac_id
LIMIT 1
),
(
SELECT accomodation.ac_id
FROM accomodation
WHERE ac_status != 'draft'
AND ac_images != 'b:0;'
AND NOT EXISTS
(
SELECT NULL
FROM accomodation_category
WHERE acat_id = ac_category
AND acat_slug = 'vendeglatohely'
)
ORDER BY
ac_id
LIMIT 1
)
)
这假设您的 ac_id 的分布或多或少是均匀的.
This assumes your ac_id's are distributed more or less evenly.
这篇关于如何优化 MySQL 的 ORDER BY RAND() 函数?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何有效地使用窗口函数根据 N 个先前值来决定How to use windowing functions efficiently to decide next N number of rows based on N number of previous values(如何有效地使用窗口函数根据
在“GROUP BY"中重用选择表达式的结果;条款reuse the result of a select expression in the quot;GROUP BYquot; clause?(在“GROUP BY中重用选择表达式的结果;条款?)
Pyspark DataFrameWriter jdbc 函数的 ignore 选项是忽略整Does ignore option of Pyspark DataFrameWriter jdbc function ignore entire transaction or just offending rows?(Pyspark DataFrameWriter jdbc 函数的 ig
使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 Error while using INSERT INTO table ON DUPLICATE KEY, using a for loop array(使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 for 循环数组
pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合pyspark mysql jdbc load An error occurred while calling o23.load No suitable driver(pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合适的
如何将 Apache Spark 与 MySQL 集成以将数据库表作为How to integrate Apache Spark with MySQL for reading database tables as a spark dataframe?(如何将 Apache Spark 与 MySQL 集成以将数据库表作为