我有一张看起来像这样的表格:
I have a table that looks like this:
id count
1 100
2 50
3 10
我想添加一个名为cumulative_sum的新列,因此该表将如下所示:
I want to add a new column called cumulative_sum, so the table would look like this:
id count cumulative_sum
1 100 100
2 50 150
3 10 160
是否有可以轻松完成此操作的 MySQL 更新语句?实现这一目标的最佳方法是什么?
Is there a MySQL update statement that can do this easily? What's the best way to accomplish this?
如果性能有问题,您可以使用 MySQL 变量:
If performance is an issue, you could use a MySQL variable:
set @csum := 0;
update YourTable
set cumulative_sum = (@csum := @csum + count)
order by id;
或者,您可以删除 cumulative_sum 列并在每个查询中计算它:
Alternatively, you could remove the cumulative_sum column and calculate it on each query:
set @csum := 0;
select id, count, (@csum := @csum + count) as cumulative_sum
from YourTable
order by id;
这以运行方式计算运行总和:)
This calculates the running sum in a running way :)
这篇关于在 MySQL 中创建累积总和列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何有效地使用窗口函数根据 N 个先前值来决定How to use windowing functions efficiently to decide next N number of rows based on N number of previous values(如何有效地使用窗口函数根据
在“GROUP BY"中重用选择表达式的结果;条款reuse the result of a select expression in the quot;GROUP BYquot; clause?(在“GROUP BY中重用选择表达式的结果;条款?)
Pyspark DataFrameWriter jdbc 函数的 ignore 选项是忽略整Does ignore option of Pyspark DataFrameWriter jdbc function ignore entire transaction or just offending rows?(Pyspark DataFrameWriter jdbc 函数的 ig
使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 Error while using INSERT INTO table ON DUPLICATE KEY, using a for loop array(使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 for 循环数组
pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合pyspark mysql jdbc load An error occurred while calling o23.load No suitable driver(pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合适的
如何将 Apache Spark 与 MySQL 集成以将数据库表作为How to integrate Apache Spark with MySQL for reading database tables as a spark dataframe?(如何将 Apache Spark 与 MySQL 集成以将数据库表作为