PHP利用二叉堆实现TopK-算法的方法详解

时间:2017-05-08

前言

在以往工作或者面试的时候常会碰到一个问题,如何实现海量TopN,就是在一个非常大的结果集里面快速找到最大的前10或前100个数,同时要保证内存和速度的效率,我们可能第一个想法就是利用排序,然后截取前10或前100,而排序对于量不是特别大的时候没有任何问题,但只要量特别大是根本不可能完成这个任务的,比如在一个数组或者文本文件里有几亿个数,这样是根本无法全部读入内存的,所以利用排序解决这个问题并不是最好的,所以我们这里就用php去实现一个小顶堆来解决这个问题.

二叉堆

二叉堆是一种特殊的堆,二叉堆是完全二叉树或者是近似完全二叉树,二叉堆有两种,最大堆 和 最小堆,最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值

PHP利用二叉堆实现TopK-算法的方法详解
小顶堆-(图片来自网络)

二叉堆一般用数组来表示(看上图),例如,根节点在数组中的位置是0,第n个位置的子节点分别在2n+1和 2n+2,因此,第0个位置的子节点在1和2,1的子节点在3和4,以此类推,这种存储方式便於寻找父节点和子节点。

具体概念问题这里就不在多说了,如果对二叉堆有疑问的可以在好好了解下这个数据结构,下面我们就针对上述topN问题来用php代码实现并解决,为了看出区别这里先用排序的方式去实现下看下效果如何。

利用快速排序算法来实现 TopN

//为了测试运行内存调大一点
ini_set('memory_limit', '2024M');

//实现一个快速排序函数
function quick_sort(array $array){
 $length = count($array);
 $left_array = array();
 $right_array = array();
 if($length <= 1){
  return $array;
 }
 $key = $array[0];
 for($i=1;$i<$length;$i++){
  if($array[$i] > $key){
   $right_array[] = $array[$i];
  }else{
   $left_array[] = $array[$i];
  }
 }
 $left_array = quick_sort($left_array);
 $right_array = quick_sort($right_array);
 return array_merge($right_array,array($key),$left_array); 
}

//构造500w不重复数
for($i=0;$i<5000000;$i++){
 $numArr[] = $i; 
}
//打乱它们
shuffle($numArr);

//现在我们从里面找到top10最大的数
var_dump(time());
print_r(array_slice(quick_sort($all),0,10));
var_dump(time());

PHP利用二叉堆实现TopK-算法的方法详解

运行之后结果

可以看到上面打印出了top10的结果,并输出了下运行时间,大概99s左右,但这只是500w个数且全部能装入内存的情况,如果我们有一个文件里面有5kw或5亿个数,肯定就会有些问题了.

利用二叉堆算法来实现 TopN

实现流程是:

     1、先读取10个或100个数到数组里面,这就是我们的topN数.

     2、调用生成小顶堆函数,把这个数组生成一个小顶堆结构,这个时候堆顶一定是最小的.

     3、从文件或者数组依次遍历剩余的所有数.

     4、每遍历出来一个则跟堆顶的元素进行大小比较,如果小于堆顶元素则抛弃,如果大于堆顶元素则替换之.

     5、跟堆顶元素替换完毕之后,在调用生成小顶堆函数继续生成小顶堆,因为需要再找出来一个最小的.

     6、重复以上4~5步骤,这样当全部遍历完毕之后,我们这个小顶堆里面的就是最大的topN,因为我们的小顶堆永远都是排除最小的留下最大的,而且这个调整小顶堆速度也很快,只是相对调整下,只要保证根节点小于左右节点就可以.

     7、算法复杂度的话按top10最坏的情况下,就是每遍历一个数,如果跟堆顶进行替换,需要调整10次的情况,也要比排序速度快,而且也不是把所有的内容全部读入内存,可以理解成就是一次线性遍历.

//生成小顶堆函数
function Heap(&$arr,$idx){
 $left = ($idx << 1) + 1;
 $right = ($idx << 1) + 2;

 if (!$arr[$left]){
  return;
 }

 if($arr[$right] && $arr[$right] < $arr[$left]){
  $l = $right;
 }else{
  $l = $left;
 }

 if ($arr[$idx] > $arr[$l]){
   $tmp = $arr[$idx]; 
   $arr[$idx] = $arr[$l];
   $arr[$l] = $tmp;
   Heap($arr,$l);
 }
}

//这里为了保证跟上面一致,也构造500w不重复数
/*
 当然这个数据集并不一定全放在内存,也可以在
 文件里面,因为我们并不是全部加载到内存去进
 行排序
*/
for($i=0;$i<5000000;$i++){
 $numArr[] = $i; 
}
//打乱它们
shuffle($numArr);

//先取出10个到数组
$topArr = array_slice($numArr,0,10);

//获取最后一个有子节点的索引位置
//因为在构造小顶堆的时候是从最后一个有左或右节点的位置
//开始从下往上不断的进行移动构造(具体可看上面的图去理解)
$idx = floor(count($topArr) / 2) - 1;

//生成小顶堆
for($i=$idx;$i>=0;$i--){
 Heap($topArr,$i);
}

var_dump(time());
//这里可以看到,就是开始遍历剩下的所有元素
for($i = count($topArr); $i < count($numArr); $i++){
 //每遍历一个则跟堆顶元素进行比较大小
 if ($numArr[$i] > $topArr[0]){
  //如果大于堆顶元素则替换
  $topArr[0] = $numArr[$i];
  /*
   重新调用生成小顶堆函数进行维护,只不过这次是从堆顶
   的索引位置开始自上往下进行维护,因为我们只是把堆顶
   的元素给替换掉了而其余的还是按照根节点小于左右节点
   的顺序摆放这也就是我们上面说的,只是相对调整下,并
   不是全部调整一遍
  */
  Heap($topArr,0);
 }
}
var_dump(time());

PHP利用二叉堆实现TopK-算法的方法详解

运行之后结果

  • 共2页:
  • 上一篇1/2
  • 下一页
  • 上一篇:PHP中的正则表达式实例详解 下一篇:PHP关键特性之命名空间实例详解

    相关文章

    最新文章