我正在尝试根据时间序列数据的滑动窗口提取特征.在 Scala 中,似乎有一个基于 this post 和 文档
I am trying to extract features based on sliding window over time series data.
In Scala, it seems like there is a sliding function based on this post and the documentation
import org.apache.spark.mllib.rdd.RDDFunctions._
sc.parallelize(1 to 100, 10)
.sliding(3)
.map(curSlice => (curSlice.sum / curSlice.size))
.collect()
我的问题是 PySpark 中是否有类似的功能?或者如果还没有这样的功能,我们如何实现类似的滑动窗口变换?
My questions is there similar functions in PySpark? Or how do we achieve similar sliding window transformations if there is no such function yet?
据我所知 sliding 函数在 Python 中不可用并且 SlidingRDD 是一个私有类并且不能在 MLlib 之外访问.
As far as I can tell sliding function is not available from Python and SlidingRDD is a private class and cannot be accessed outside MLlib.
如果你在现有的 RDD 上使用 sliding,你可以像这样创建穷人的 sliding:
If you to use sliding on an existing RDD you can create poor man's sliding like this:
def sliding(rdd, n):
assert n > 0
def gen_window(xi, n):
x, i = xi
return [(i - offset, (i, x)) for offset in xrange(n)]
return (
rdd.
zipWithIndex(). # Add index
flatMap(lambda xi: gen_window(xi, n)). # Generate pairs with offset
groupByKey(). # Group to create windows
# Sort values to ensure order inside window and drop indices
mapValues(lambda vals: [x for (i, x) in sorted(vals)]).
sortByKey(). # Sort to makes sure we keep original order
values(). # Get values
filter(lambda x: len(x) == n)) # Drop beginning and end
或者,您可以尝试这样的事情(在 toolz)
Alternatively you can try something like this (with a small help of toolz)
from toolz.itertoolz import sliding_window, concat
def sliding2(rdd, n):
assert n > 1
def get_last_el(i, iter):
"""Return last n - 1 elements from the partition"""
return [(i, [x for x in iter][(-n + 1):])]
def slide(i, iter):
"""Prepend previous items and return sliding window"""
return sliding_window(n, concat([last_items.value[i - 1], iter]))
def clean_last_items(last_items):
"""Adjust for empty or to small partitions"""
clean = {-1: [None] * (n - 1)}
for i in range(rdd.getNumPartitions()):
clean[i] = (clean[i - 1] + list(last_items[i]))[(-n + 1):]
return {k: tuple(v) for k, v in clean.items()}
last_items = sc.broadcast(clean_last_items(
rdd.mapPartitionsWithIndex(get_last_el).collectAsMap()))
return rdd.mapPartitionsWithIndex(slide)
这篇关于如何在 Pyspark 中随时间序列数据使用滑动窗口转换数据的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何在 conda 环境中安装 Selenium?How to install Selenium in a conda environment?(如何在 conda 环境中安装 Selenium?)
使用 Anaconda installe 在 Windows 上获取 CUDA 和 CUDNNget the CUDA and CUDNN version on windows with Anaconda installe(使用 Anaconda installe 在 Windows 上获取 CUDA 和 CUDNN 版本)
如何下载适用于 python 3.6 的 AnacondaHow can I download Anaconda for python 3.6(如何下载适用于 python 3.6 的 Anaconda)
使用两个不同的 Python 发行版Using two different Python Distributions(使用两个不同的 Python 发行版)
除了 OSX 上现有的 pyenv 安装之外,如何安装 AnaHow can I install Anaconda aside an existing pyenv installation on OSX?(除了 OSX 上现有的 pyenv 安装之外,如何安装 Anaconda?)
在 Cygwin 中为 Anaconda 永久设置 Python 路径Permanently set Python path for Anaconda within Cygwin(在 Cygwin 中为 Anaconda 永久设置 Python 路径)