import torch
import torch.nn as nn
device = torch.device('cuda' if torch.cuda.is_available() else
'cpu')
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.layer = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), # 16x16x650
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), # 32x16x650
nn.ReLU(),
nn.Dropout2d(0.5),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), # 64x16x650
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), # 64x8x325
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU()) # 64x8x325
self.fc = nn.Sequential(
nn.Linear(64*8*325, 128),
nn.ReLU(),
nn.Linear(128, 256),
nn.ReLU(),
nn.Linear(256, 1),
)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
# HYPERPARAMETER
learning_rate = 0.0001
num_epochs = 15
import data
def main():
model = Model().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),
lr=learning_rate)
total_step = len(data.train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(data.train_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in data.test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
if __name__ == '__main__':
main()
错误:
File "/home/rladhkstn8/Desktop/SWID/tmp/pycharm_project_853/model.py", line 82, in <module>
main()
File "/home/rladhkstn8/Desktop/SWID/tmp/pycharm_project_853/model.py", line 56, in main
outputs = model(images)
File "/home/rladhkstn8/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "/home/rladhkstn8/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 83, in forward
raise NotImplementedError
NotImplementedError
我不知道问题出在哪里.我知道应该实现NotImplementedError,但是当有未实现的代码时就会发生.
I do not know where the problem is. I know that NotImplementedError should be implemented, but it happens when there is unimplemented code.
请仔细查看__init__ 函数的缩进:您的 forward 是 __init__ 的一部分,而不是模块的一部分.
please look carefully at the indentation of your __init__ function: your forward is part of __init__ not part of your module.
这篇关于PyTorch NotImplementedError 转发的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何在python中的感兴趣区域周围绘制一个矩形How to draw a rectangle around a region of interest in python(如何在python中的感兴趣区域周围绘制一个矩形)
如何使用 OpenCV 检测和跟踪人员?How can I detect and track people using OpenCV?(如何使用 OpenCV 检测和跟踪人员?)
如何在图像的多个矩形边界框中应用阈值?How to apply threshold within multiple rectangular bounding boxes in an image?(如何在图像的多个矩形边界框中应用阈值?)
如何下载 Coco Dataset 的特定部分?How can I download a specific part of Coco Dataset?(如何下载 Coco Dataset 的特定部分?)
根据文本方向检测图像方向角度Detect image orientation angle based on text direction(根据文本方向检测图像方向角度)
使用 Opencv 检测图像中矩形的中心和角度Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 检测图像中矩形的中心和角度)