我想知道我的实施是否有效.我试图使用 python 找到该问题的最简单和低复杂度的解决方案.
I would like to know if my implementation is efficient. I have tried to find the simplest and low complex solution to that problem using python.
def count_gap(x):
"""
Perform Find the longest sequence of zeros between ones "gap" in binary representation of an integer
Parameters
----------
x : int
input integer value
Returns
----------
max_gap : int
the maximum gap length
"""
try:
# Convert int to binary
b = "{0:b}".format(x)
# Iterate from right to lift
# Start detecting gaps after fist "one"
for i,j in enumerate(b[::-1]):
if int(j) == 1:
max_gap = max([len(i) for i in b[::-1][i:].split('1') if i])
break
except ValueError:
print("Oops! no gap found")
max_gap = 0
return max_gap
让我知道你的意见.
您的实现将整数转换为基数为 2 的字符串,然后访问字符串中的每个字符.相反,您可以使用 << 和 & 访问整数中的每一位.这样做将避免访问每个位两次(首先将其转换为字符串,然后检查结果字符串中是否为1").它还将避免为字符串分配内存,然后为您检查的每个子字符串分配内存.
Your implementation converts the integer to a base two string then visits each character in the string. Instead, you could just visit each bit in the integer using << and &. Doing so will avoid visiting each bit twice (first to convert it to a string, then to check if if it's a "1" or not in the resulting string). It will also avoid allocating memory for the string and then for each substring you inspect.
您可以通过访问 1 << 来检查整数的每一位.0, 1 <<1, ..., 1 <<(x.bit_length).
You can inspect each bit of the integer by visiting 1 << 0, 1 << 1, ..., 1 << (x.bit_length).
例如:
def max_gap(x):
max_gap_length = 0
current_gap_length = 0
for i in range(x.bit_length()):
if x & (1 << i):
# Set, any gap is over.
if current_gap_length > max_gap_length:
max_gap_length = current_gap_length
current_gap_length = 0
else:
# Not set, the gap widens.
current_gap_length += 1
# Gap might end at the end.
if current_gap_length > max_gap_length:
max_gap_length = current_gap_length
return max_gap_length
这篇关于Python:在整数的二进制表示中查找最长的二进制间隙的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何在python中的感兴趣区域周围绘制一个矩形How to draw a rectangle around a region of interest in python(如何在python中的感兴趣区域周围绘制一个矩形)
如何使用 OpenCV 检测和跟踪人员?How can I detect and track people using OpenCV?(如何使用 OpenCV 检测和跟踪人员?)
如何在图像的多个矩形边界框中应用阈值?How to apply threshold within multiple rectangular bounding boxes in an image?(如何在图像的多个矩形边界框中应用阈值?)
如何下载 Coco Dataset 的特定部分?How can I download a specific part of Coco Dataset?(如何下载 Coco Dataset 的特定部分?)
根据文本方向检测图像方向角度Detect image orientation angle based on text direction(根据文本方向检测图像方向角度)
使用 Opencv 检测图像中矩形的中心和角度Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 检测图像中矩形的中心和角度)