假设我有以下数据框:
更新 feat 和 another_feat 列的值的最有效方法是什么/strong>?
What is the most efficient way to update the values of the columns feat and another_feat where the stream is number 2?
是这个吗?
for index, row in df.iterrows():
if df1.loc[index,'stream'] == 2:
# do something
更新:如果我有超过 100 列怎么办?我不想明确命名要更新的列.我想将每列的值除以 2(流列除外).
UPDATE: What to do if I have more than a 100 columns? I don't want to explicitly name the columns that I want to update. I want to divide the value of each column by 2 (except for the stream column).
所以要明确我的目标是什么:
So to be clear what my goal is:
将所有具有流 2 的行的所有值除以 2,但不更改流列
我觉得你可以使用loc 如果您需要将两列更新为相同的值:
I think you can use loc if you need update two columns to same value:
df1.loc[df1['stream'] == 2, ['feat','another_feat']] = 'aaaa'
print df1
stream feat another_feat
a 1 some_value some_value
b 2 aaaa aaaa
c 2 aaaa aaaa
d 3 some_value some_value
如果您需要单独更新,一个选项是使用:
If you need update separate, one option is use:
df1.loc[df1['stream'] == 2, 'feat'] = 10
print df1
stream feat another_feat
a 1 some_value some_value
b 2 10 some_value
c 2 10 some_value
d 3 some_value some_value
另一个常见的选项是使用 numpy.where:
Another common option is use numpy.where:
df1['feat'] = np.where(df1['stream'] == 2, 10,20)
print df1
stream feat another_feat
a 1 20 some_value
b 2 10 some_value
c 2 10 some_value
d 3 20 some_value
如果您需要在条件为 True 的情况下划分所有不带 stream 的列,请使用:
If you need divide all columns without stream where condition is True, use:
print df1
stream feat another_feat
a 1 4 5
b 2 4 5
c 2 2 9
d 3 1 7
#filter columns all without stream
cols = [col for col in df1.columns if col != 'stream']
print cols
['feat', 'another_feat']
df1.loc[df1['stream'] == 2, cols ] = df1 / 2
print df1
stream feat another_feat
a 1 4.0 5.0
b 2 2.0 2.5
c 2 1.0 4.5
d 3 1.0 7.0
如果可以使用多个条件,请使用多个 numpy.在哪里或 numpy.select:
If working with multiple conditions is possible use multiple numpy.where
or numpy.select:
df0 = pd.DataFrame({'Col':[5,0,-6]})
df0['New Col1'] = np.where((df0['Col'] > 0), 'Increasing',
np.where((df0['Col'] < 0), 'Decreasing', 'No Change'))
df0['New Col2'] = np.select([df0['Col'] > 0, df0['Col'] < 0],
['Increasing', 'Decreasing'],
default='No Change')
print (df0)
Col New Col1 New Col2
0 5 Increasing Increasing
1 0 No Change No Change
2 -6 Decreasing Decreasing
这篇关于更新 pandas 中满足特定条件的行值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何在python中的感兴趣区域周围绘制一个矩形How to draw a rectangle around a region of interest in python(如何在python中的感兴趣区域周围绘制一个矩形)
如何使用 OpenCV 检测和跟踪人员?How can I detect and track people using OpenCV?(如何使用 OpenCV 检测和跟踪人员?)
如何在图像的多个矩形边界框中应用阈值?How to apply threshold within multiple rectangular bounding boxes in an image?(如何在图像的多个矩形边界框中应用阈值?)
如何下载 Coco Dataset 的特定部分?How can I download a specific part of Coco Dataset?(如何下载 Coco Dataset 的特定部分?)
根据文本方向检测图像方向角度Detect image orientation angle based on text direction(根据文本方向检测图像方向角度)
使用 Opencv 检测图像中矩形的中心和角度Detect centre and angle of rectangles in an image using Opencv(使用 Opencv 检测图像中矩形的中心和角度)