目标
我有一个 Pandas 数据框,如下所示,它有多个列,并且想要获取列的总数,MyColumn.
I have a Pandas data frame, as shown below, with multiple columns and would like to get the total of column, MyColumn.
数据框 - df:
打印 df
X MyColumn Y Z
0 A 84 13.0 69.0
1 B 76 77.0 127.0
2 C 28 69.0 16.0
3 D 28 28.0 31.0
4 E 19 20.0 85.0
5 F 84 193.0 70.0
<小时>
我的尝试:
我尝试使用 groupby 和 .sum() 获取列的总和:
I have attempted to get the sum of the column using groupby and .sum():
Total = df.groupby['MyColumn'].sum()
print Total
这会导致以下错误:
TypeError: 'instancemethod' object has no attribute '__getitem__'
<小时>
预期输出
我希望输出如下:
319
或者,我希望 df 使用标题为 TOTAL 的新 row 进行编辑,其中包含总数:
Or alternatively, I would like df to be edited with a new row entitled TOTAL containing the total:
X MyColumn Y Z
0 A 84 13.0 69.0
1 B 76 77.0 127.0
2 C 28 69.0 16.0
3 D 28 28.0 31.0
4 E 19 20.0 85.0
5 F 84 193.0 70.0
TOTAL 319
你应该使用 sum:
You should use sum:
Total = df['MyColumn'].sum()
print (Total)
319
然后你使用 loc 与 Series,在这种情况下,索引应设置为与您需要求和的特定列相同:
Then you use loc with Series, in that case the index should be set as the same as the specific column you need to sum:
df.loc['Total'] = pd.Series(df['MyColumn'].sum(), index = ['MyColumn'])
print (df)
X MyColumn Y Z
0 A 84.0 13.0 69.0
1 B 76.0 77.0 127.0
2 C 28.0 69.0 16.0
3 D 28.0 28.0 31.0
4 E 19.0 20.0 85.0
5 F 84.0 193.0 70.0
Total NaN 319.0 NaN NaN
因为如果你传递标量,所有行的值都会被填充:
because if you pass scalar, the values of all rows will be filled:
df.loc['Total'] = df['MyColumn'].sum()
print (df)
X MyColumn Y Z
0 A 84 13.0 69.0
1 B 76 77.0 127.0
2 C 28 69.0 16.0
3 D 28 28.0 31.0
4 E 19 20.0 85.0
5 F 84 193.0 70.0
Total 319 319 319.0 319.0
另外两个解决方案是 at 和 ix 查看以下应用:
Two other solutions are with at, and ix see the applications below:
df.at['Total', 'MyColumn'] = df['MyColumn'].sum()
print (df)
X MyColumn Y Z
0 A 84.0 13.0 69.0
1 B 76.0 77.0 127.0
2 C 28.0 69.0 16.0
3 D 28.0 28.0 31.0
4 E 19.0 20.0 85.0
5 F 84.0 193.0 70.0
Total NaN 319.0 NaN NaN
<小时>
df.ix['Total', 'MyColumn'] = df['MyColumn'].sum()
print (df)
X MyColumn Y Z
0 A 84.0 13.0 69.0
1 B 76.0 77.0 127.0
2 C 28.0 69.0 16.0
3 D 28.0 28.0 31.0
4 E 19.0 20.0 85.0
5 F 84.0 193.0 70.0
Total NaN 319.0 NaN NaN
注意:自 Pandas v0.20 起,ix 已被弃用.请改用 loc 或 iloc.
Note: Since Pandas v0.20, ix has been deprecated. Use loc or iloc instead.
这篇关于获取 Pandas 列的总数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
列表字典中的总和值Sum values in a dict of lists(列表字典中的总和值)
如何在 Python 中对文本文件中的数字求和How to sum numbers from a text file in Python(如何在 Python 中对文本文件中的数字求和)
什么是类似于 sum() 的减法函数,用于减去列表中What is a subtraction function that is similar to sum() for subtracting items in list?(什么是类似于 sum() 的减法函数,用于减去列表中的
Python 等价于 sum() 使用 xor()Python equivalent of sum() using xor()(Python 等价于 sum() 使用 xor())
python中的求和矩阵列sum matrix columns in python(python中的求和矩阵列)
N个列表元素的总和pythonsum of N lists element-wise python(N个列表元素的总和python)