我使用的是 MySQL 5.x,有一个主表包含所有客户的统计数据.我想对其运行报告,但不想在同一张表上运行它,所以我想每天晚上将数据移动到仅用于报告的不同表中.我的问题是,为每个客户也有一个单独的表进行存档,还是只为所有客户创建一个存档表是有益的吗?系统中可能有数以千计的客户,如果我决定按客户将其分解,则可能意味着数以千计的存档表.你的想法?
I am using MySQL 5.x and there is one main table that has the stats combined for all customers. I would like to run reporting on it but dont want to run it on the same table so Im thinking of every night moving the data to a different table that will only be used for reporting. My question is would it be beneficial to have a seperate table for each customer to archive too or just have it just one archive table for all customers? There could be thousands of customers in the system which could mean thousands of archive tables if I decide to break it up by customer. Your thoughts?
如果您为每个客户使用个人,则表的数量会增加.
If you use the individual for each customer, tables will grow in number.
如果你有统计数据,那么我建议像下面这样总结
If you have statistics data then i suggest to summarize it like below
如果你想把整个事情放在一起,你需要组合三个表.
If you want the whole thing together you need to combine three tables.
另一种方式,使用mysql复制和master进行insert、update、delete和slave进行select
other way, use mysql replication and master for insert,update,delete and slave for select
这篇关于Mysql - 归档数据,使用哪种解决方案?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何有效地使用窗口函数根据 N 个先前值来决定How to use windowing functions efficiently to decide next N number of rows based on N number of previous values(如何有效地使用窗口函数根据
在“GROUP BY"中重用选择表达式的结果;条款reuse the result of a select expression in the quot;GROUP BYquot; clause?(在“GROUP BY中重用选择表达式的结果;条款?)
Pyspark DataFrameWriter jdbc 函数的 ignore 选项是忽略整Does ignore option of Pyspark DataFrameWriter jdbc function ignore entire transaction or just offending rows?(Pyspark DataFrameWriter jdbc 函数的 ig
使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 Error while using INSERT INTO table ON DUPLICATE KEY, using a for loop array(使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 for 循环数组
pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合pyspark mysql jdbc load An error occurred while calling o23.load No suitable driver(pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合适的
如何将 Apache Spark 与 MySQL 集成以将数据库表作为How to integrate Apache Spark with MySQL for reading database tables as a spark dataframe?(如何将 Apache Spark 与 MySQL 集成以将数据库表作为