我已经看到将业务逻辑从数据访问层(存储过程、LINQ 等)移到业务逻辑组件层(如 C# 对象)中的趋势.
I've seen a trend to move business logic out of the data access layer (stored procedures, LINQ, etc.) and into a business logic component layer (like C# objects).
这是否被认为是当今做事的正确"方式?如果是这样,这是否意味着某些数据库开发人员职位可能会被淘汰,以支持更多的中间层编码职位?(即更多的 c# 代码而不是更长的存储过程.)
Is this considered the "right" way to do things these days? If so, does this mean that some database developer positions may be eliminated in favor of more middle-tier coding positions? (i.e. more c# code rather than more long stored procedures.)
数据访问逻辑属于数据访问层,业务逻辑属于业务层.从设计的角度来看,我不明白将两者混合起来怎么会被认为是一个好主意.
Data access logic belongs in the data access layer, business logic belongs in the business layer. I don't see how mixing the two could ever be considered a good idea from a design standpoint.
这篇关于数据访问层是否应该包含业务逻辑?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何有效地使用窗口函数根据 N 个先前值来决定How to use windowing functions efficiently to decide next N number of rows based on N number of previous values(如何有效地使用窗口函数根据
在“GROUP BY"中重用选择表达式的结果;条款reuse the result of a select expression in the quot;GROUP BYquot; clause?(在“GROUP BY中重用选择表达式的结果;条款?)
Pyspark DataFrameWriter jdbc 函数的 ignore 选项是忽略整Does ignore option of Pyspark DataFrameWriter jdbc function ignore entire transaction or just offending rows?(Pyspark DataFrameWriter jdbc 函数的 ig
使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 Error while using INSERT INTO table ON DUPLICATE KEY, using a for loop array(使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 for 循环数组
pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合pyspark mysql jdbc load An error occurred while calling o23.load No suitable driver(pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合适的
如何将 Apache Spark 与 MySQL 集成以将数据库表作为How to integrate Apache Spark with MySQL for reading database tables as a spark dataframe?(如何将 Apache Spark 与 MySQL 集成以将数据库表作为