我是一个老派的 MySQL 用户并且总是喜欢 JOIN 而不是子查询.但是现在每个人都使用子查询,我讨厌它;我不知道为什么.
I am an old-school MySQL user and have always preferred JOIN over sub-query. But nowadays everyone uses sub-query, and I hate it; I don't know why.
我缺乏理论知识来判断是否有任何差异.子查询是否与 JOIN 一样好,因此无需担心?
I lack the theoretical knowledge to judge for myself if there is any difference. Is a sub-query as good as a JOIN and therefore is there nothing to worry about?
摘自 MySQL 手册 (13.2.10.11 将子查询重写为连接):
LEFT [OUTER] JOIN 比等效的子查询更快,因为服务器可能能够更好地优化它——这一事实并不仅仅针对 MySQL 服务器.
A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might be able to optimize it better—a fact that is not specific to MySQL Server alone.
因此子查询可能比 LEFT [OUTER] JOIN 慢,但在我看来,它们的优势在于可读性稍高.
So subqueries can be slower than LEFT [OUTER] JOIN, but in my opinion their strength is slightly higher readability.
这篇关于加入与子查询的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何有效地使用窗口函数根据 N 个先前值来决定How to use windowing functions efficiently to decide next N number of rows based on N number of previous values(如何有效地使用窗口函数根据
在“GROUP BY"中重用选择表达式的结果;条款reuse the result of a select expression in the quot;GROUP BYquot; clause?(在“GROUP BY中重用选择表达式的结果;条款?)
Pyspark DataFrameWriter jdbc 函数的 ignore 选项是忽略整Does ignore option of Pyspark DataFrameWriter jdbc function ignore entire transaction or just offending rows?(Pyspark DataFrameWriter jdbc 函数的 ig
使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 Error while using INSERT INTO table ON DUPLICATE KEY, using a for loop array(使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 for 循环数组
pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合pyspark mysql jdbc load An error occurred while calling o23.load No suitable driver(pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合适的
如何将 Apache Spark 与 MySQL 集成以将数据库表作为How to integrate Apache Spark with MySQL for reading database tables as a spark dataframe?(如何将 Apache Spark 与 MySQL 集成以将数据库表作为