我正在将所有 SQL Server 查询转换为 MySQL,其中包含 WITH 的查询都失败了.举个例子:
I am converting all my SQL Server queries to MySQL and my queries that have WITH in them are all failing. Here's an example:
WITH t1 AS
(
SELECT article.*, userinfo.*, category.*
FROM question
INNER JOIN userinfo ON userinfo.user_userid = article.article_ownerid
INNER JOIN category ON article.article_categoryid = category.catid
WHERE article.article_isdeleted = 0
)
SELECT t1.*
FROM t1
ORDER BY t1.article_date DESC
LIMIT 1, 3
MySQL 8.0 之前的版本 不支持 WITH 子句(SQL Server 中的 CTE;Oracle 中的子查询分解),因此您只能使用:
MySQL prior to version 8.0 doesn't support the WITH clause (CTE in SQL Server parlance; Subquery Factoring in Oracle), so you are left with using:
对该功能的请求可以追溯到 2006 年.
The request for the feature dates back to 2006.
如前所述,您提供了一个糟糕的示例 - 如果您不以任何方式更改列的输出,则无需执行子选择:
As mentioned, you provided a poor example - there's no need to perform a subselect if you aren't altering the output of the columns in any way:
SELECT *
FROM ARTICLE t
JOIN USERINFO ui ON ui.user_userid = t.article_ownerid
JOIN CATEGORY c ON c.catid = t.article_categoryid
WHERE t.published_ind = 0
ORDER BY t.article_date DESC
LIMIT 1, 3
这是一个更好的例子:
SELECT t.name,
t.num
FROM TABLE t
JOIN (SELECT c.id
COUNT(*) 'num'
FROM TABLE c
WHERE c.column = 'a'
GROUP BY c.id) ta ON ta.id = t.id
这篇关于你如何使用“WITH"?MySQL中的条款?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何有效地使用窗口函数根据 N 个先前值来决定How to use windowing functions efficiently to decide next N number of rows based on N number of previous values(如何有效地使用窗口函数根据
在“GROUP BY"中重用选择表达式的结果;条款reuse the result of a select expression in the quot;GROUP BYquot; clause?(在“GROUP BY中重用选择表达式的结果;条款?)
Pyspark DataFrameWriter jdbc 函数的 ignore 选项是忽略整Does ignore option of Pyspark DataFrameWriter jdbc function ignore entire transaction or just offending rows?(Pyspark DataFrameWriter jdbc 函数的 ig
使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 Error while using INSERT INTO table ON DUPLICATE KEY, using a for loop array(使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 for 循环数组
pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合pyspark mysql jdbc load An error occurred while calling o23.load No suitable driver(pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合适的
如何将 Apache Spark 与 MySQL 集成以将数据库表作为How to integrate Apache Spark with MySQL for reading database tables as a spark dataframe?(如何将 Apache Spark 与 MySQL 集成以将数据库表作为