此表用于存储会话(事件):
This table is used to store sessions (events):
CREATE TABLE session (
id int(11) NOT NULL AUTO_INCREMENT
, start_date date
, end_date date
);
INSERT INTO session
(start_date, end_date)
VALUES
("2010-01-01", "2010-01-10")
, ("2010-01-20", "2010-01-30")
, ("2010-02-01", "2010-02-15")
;
我们不想在范围之间发生冲突.
假设我们需要插入一个从 2010-01-05 到 2010-01-25 的新会话.
我们想知道冲突的会话.
We don't want to have conflict between ranges.
Let's say we need to insert a new session from 2010-01-05 to 2010-01-25.
We would like to know the conflicting session(s).
这是我的查询:
SELECT *
FROM session
WHERE "2010-01-05" BETWEEN start_date AND end_date
OR "2010-01-25" BETWEEN start_date AND end_date
OR "2010-01-05" >= start_date AND "2010-01-25" <= end_date
;
结果如下:
+----+------------+------------+
| id | start_date | end_date |
+----+------------+------------+
| 1 | 2010-01-01 | 2010-01-10 |
| 2 | 2010-01-20 | 2010-01-30 |
+----+------------+------------+
有没有更好的方法来获得它?
Is there a better way to get that?
小提琴
我曾经在一个日历应用程序中遇到过这样的问题.我想我使用了这样的东西:
I had such a query with a calendar application I once wrote. I think I used something like this:
... WHERE new_start < existing_end
AND new_end > existing_start;
UPDATE 这绝对有效((ns, ne, es, ee) = (new_start, new_end, existing_start, existing_end)):
UPDATE This should definitely work ((ns, ne, es, ee) = (new_start, new_end, existing_start, existing_end)):
<小时>
这是一个小提琴
这篇关于检查 MySQL 中日期范围的重叠的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!
如何有效地使用窗口函数根据 N 个先前值来决定How to use windowing functions efficiently to decide next N number of rows based on N number of previous values(如何有效地使用窗口函数根据
在“GROUP BY"中重用选择表达式的结果;条款reuse the result of a select expression in the quot;GROUP BYquot; clause?(在“GROUP BY中重用选择表达式的结果;条款?)
Pyspark DataFrameWriter jdbc 函数的 ignore 选项是忽略整Does ignore option of Pyspark DataFrameWriter jdbc function ignore entire transaction or just offending rows?(Pyspark DataFrameWriter jdbc 函数的 ig
使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 Error while using INSERT INTO table ON DUPLICATE KEY, using a for loop array(使用 INSERT INTO table ON DUPLICATE KEY 时出错,使用 for 循环数组
pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合pyspark mysql jdbc load An error occurred while calling o23.load No suitable driver(pyspark mysql jdbc load 调用 o23.load 时发生错误 没有合适的
如何将 Apache Spark 与 MySQL 集成以将数据库表作为How to integrate Apache Spark with MySQL for reading database tables as a spark dataframe?(如何将 Apache Spark 与 MySQL 集成以将数据库表作为