如何合并两棵保持BST性质的二叉搜索树?
如果我们决定从树中取出每个元素并将其插入到另一个元素中,则该方法的复杂度将是 O(n1 * log(n2))
,其中 n1
是我们分裂的树的节点数(比如 T1
),n2
是另一棵树的节点数(比如 T1
>T2).此操作后,只有一个 BST 有 n1 + n2
个节点.
If we decide to take each element from a tree and insert it into the other, the complexity of this method would be O(n1 * log(n2))
, where n1
is the number of nodes of the tree (say T1
), which we have splitted, and n2
is the number of nodes of the other tree (say T2
). After this operation only one BST has n1 + n2
nodes.
我的问题是:我们能做得比 O(n1 * log(n2)) 更好吗?
My question is: can we do any better than O(n1 * log(n2))?
Naaff 的回答有更多细节:
Naaff's answer with a little more details:
三步 O(n1+n2) 结果为 O(n1+n2)
Three steps of O(n1+n2) result in O(n1+n2)
对于相同数量级的 n1 和 n2,这优于 O(n1 * log(n2))
For n1 and n2 of the same order of magnitude, that's better than O(n1 * log(n2))
[1] 从排序列表中创建平衡 BST 的算法(在 Python 中):
[1] Algorithm for creating a balanced BST from a sorted list (in Python):
def create_balanced_search_tree(iterator, n):
if n == 0:
return None
n_left = n//2
n_right = n - 1 - n_left
left = create_balanced_search_tree(iterator, n_left)
node = iterator.next()
right = create_balanced_search_tree(iterator, n_right)
return {'left': left, 'node': node, 'right': right}
这篇关于如何有效地合并两个 BST?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持html5模板网!